• Nexus
        • SSI Nexusは、SSIソフトウェアのユーザー、作成者、および実装者が集まる場所です。 ここでは、ベストプラクティスと業界のトレンドについて議論し、共通の課題に取り組み、最新のソフトウェアにアクセスし、それらを結び付ける製品の将来へのインプットを提供します。

        • MyLearning
        • SSI MyLearningは、SSIユーザーが詳細なトレーニング演習、資料、コース、および認定資格にアクセスできる場所です。 自己指導型のトレーニングカリキュラムにより、トレーニングはスケジュールどおりに、最も必要なときに実行されます。

        • SSIブログ
        • SSIブログは、造船とテクノロジーの交差点、業界の進歩、SSIニュースの最新情報を得るための場所です。 SSIの共同CEOであるDenis MoraisとDarren Larkinsの最新記事を読む唯一の場所です。

          Lighthouse Waveform | Crow’s Nest

        • シップコンストラクター
        • 情報をビジネスに合わせて取得するということは、船舶のライフサイクルの各段階を通して造船固有の課題と情報要件を処理するために構築されたソリューションを使用することを意味します。

        • エンタープライズプラットフォーム
        • 造船所のすべてのプロセスはデータを必要とします。ツール間でデータを適切な形式でシームレスに共有することで、意味のある実用的な情報を組織全体で利用できるようになります。造船プロジェクトに必要なカスタマイズされたツールを自由に選択できます。

        • ShipbuildingPLM
        • 造船には多くの部門間で慎重な調整が必要ですが、意思決定のための情報が多数のレガシーソフトウェアシステムとスプレッドシートにサイロ化されることが非常に多いです。これらのサイロを開くことで、各部門は、必要なときに必要な情報にアクセスできます。

        • 会社
        • SSI弊社のリーダーシップの詳細をご覧ください。

        • 場所と連絡先
        • グローバルに存在するパートナーが必要です。

        • ニュース
        • SSIと造船の最新情報

        • イベント
        • 次のイベント、カンファレンス、トレードショーに参加してください。

        • パートナー
        • プラットフォームおよび開発パートナーの詳細をご覧ください。

        • クライアント
        • SSIを信頼する業界リーダーをご覧ください。

        • キャリア
        • 造船業を可能にします。

  • 日本の造船会社のための戦略
6月 22, 2022
業界の動向

In the world of new construction shipbuilding, the value that digital twins can bring to a program and the steps to achieve that value are more and more understood. But for sustainment and in-service support, most have an idea of what the ideal is, but getting there in reality is proving tricky. What is the role of the digital twin for sustainment, and how do we make the first step to taking advantage of the digital twin?

Different Requirements for Design and Build vs Sustainment

We often think of the digital twin as one ‘thing,’ but in reality, it is a combination of connected and synchronized, but discrete, information sources. The sources that are relevant in the design and build stage are not the same as in sustainment and in-service support (ISS).

For example, the build strategy and the fabrication details of individual parts, assemblies, and spools are far less valuable once the vessel is built. Other product structures, like the Ship Work Breakdown System (SWBS), which is used for both functional design and ISS activities, are far more important. To avoid wasting time and resources, it is critical to agree on the level of detail required for sustainment and focus on accurately capturing that detail. Only what is needed should be transitioned from an as-designed or as-built digital twin to one used for ISS, maintenance, repair, or overhaul.

Carrying Forward a Digital Twin from Design and Construction

To properly manage a vessel across the entire lifecycle, whether it is part of a class or not, requires some sort of as-built model of the vessel. While the model is not the complete digital twin, it does form the basis of it. But while most shipbuilding programs today require the delivery of an as-built model, most often the model delivered for each vessel is only ‘almost’ as-built. In other cases, a single model might be delivered for the entire class. When this happens, the model is not aligned with the as-built state of any vessel.

Reality Capture

Point clouds captured of the vessel as it exists on the water, using laser scanning or photogrammetry, are one way of closing the gap between the delivered as-built model and the model needed for sustainment activities.

Picture
Reality capture of using a DotProduct handheld laser scanner. Image courtesy of DotProduct.

The typical support activities like maintenance, visualization, or responding to queries about the vessel involved in the infancy of its service will not necessarily require the same level of detail as a repair or refit. To avoid scanning the entire vessel, reality capture can be focused on the areas where that level of detail is necessary for upcoming activities.

What Information Sources are Needed for Sustainment

Sustainment is much more than just design and engineering activities. The management of catalogs, requirements, technical data, maintenance schedules, VFI, operational data, condition monitoring data, and 3D models for each hull is a critical part of managing a vessel throughout its life.

As an example, Canada’s Ocean Supercluster has identified that their Digital Ship In-Service Support Project needs to take into account:

  • Data streams to manage vessel maintenance and predict maintenance issues.
  • Dynamically-updated representations of vessels and their subsystems.
  • Virtual reality to visually interrogate and interact with 3D digital twin data.
  • A network of vessel sensors that report on the condition of the vessel and its subsystems.
  • Advanced artificial intelligence and machine learning algorithms.

With so many information sources to manage and connect, a digital twin for sustainment will need to include a platform that can manage all this information across time and effectively connect it to the model.

Managing change Across Every Department
Navy refit using a digital twin. Read more.

Bringing Together a Digital Twin for Sustainment

Carrying forward a digital twin into sustainment has been an ongoing challenge, but doing just that by effectively integrating what was used for design and build with the needs of sustainment is what US Navy Vice Admiral Bill Galinis called “the holy grail.”

According to Galinis, NAVSEA is looking to “leverage tools that the government has as well as what industry uses, and more importantly the tools that they’re going to use to go through the detail design and construction. There’s a lot of tremendous design capability out there, but the integration of those tools between what the Navy has, what industry has, and then being able to take that forward into sustainment is really where we want to go.”

Looking forward, we don’t know what capabilities we will need for sustainment or what innovations will make that job easier. Choosing the right platform to bring any existing capabilities together across the lifecycle, no matter what the original tools used were, is one part of achieving that holy grail. The other is making sure that as new innovations become practical for shipbuilders, owners, and operators to take advantage of, the information platform behind the digital twin is ready to connect that new information with everything that has come before.

Taking the First Step

Sustainment is messy. Taking stock of the information that is available to your team like the state of the as-built model, maintenance data, requirements, and point clouds (to name a few) is the first step to achieving a successful digital twin for sustainment.

Bringing those information sources together and connecting them across time is the next step to building the digital twin that will support ongoing maintenance, repair/refit, and operations activities for the entire lifetime of the vessel.

Learn More

Webinar: Bringing Together a Digital Twin

Join Simon Crook and Malay Pal, Solutions Specialists, on Wednesday, July 6th, and see how to take the next step in bringing together a digital twin for new builds, older vessels, and as-built or sustainment use-cases.

This webinar takes place: 07/06/2022 5:30 am PT.

Register Here

This webinar took place: 07/06/2022 5:30 am PT.

See our Webinars on Nexus
close

Don't Miss These Shipbuilding Strategies

Subscribe to the Shipbuilding Solutions blog and get actionable strategies and best practices from industry experts.

We don’t spam! Read our privacy policy for more info.

コメントを残す

メールアドレスが公開されることはありません。

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.